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We report the experimental observation of discrete bright matter-wave solitons with attractive interaction
in an optical lattice. Using an accordion lattice with adjustable spacing, we prepare a Bose-Einstein
condensate of cesium atoms across a defined number of lattice sites. By quenching the interaction strength
and the trapping potential, we generate both single-site and multisite solitons. Our results reveal the
existence and characteristics of these solitons across a range of lattice depths and spacings. We identify
stable regions of the solitons based on interaction strength and lattice properties, and compare these
findings with theoretical predictions. The experimental results qualitatively agree with a Gaussian
variational model and match quantitatively with numerical simulations of the three-dimensional Gross-
Pitaevskii equation extended with a quintic term to account for the loss of atoms. Our results provide
insights into the quench dynamics and collapse mechanisms, paving the way for further studies of transport
and dynamical properties of matter-wave solitons in lattices.
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Bright solitons are localized wave packets that propagate
without spreading over a low-intensity background in a
nonlinear medium [1]. They arise when the nonlinear self-
focusing in the medium balances the dispersive spreading
of the wave. Bright solitons have been observed in various
physical systems, including optical fibers [2], fluids [3],
and quantum gases [4]. In particular, Bose-Einstein con-
densates with attractive interactions have been instrumental
in studying matter-wave solitons in homogeneous systems,
experimentally demonstrating the formation [5—7], collapse
[8—10], and collisions [11] of bright solitons.

Based on a seminal theoretical insight by Davydov and
Kislukha [12], solitons have also been studied in systems
with periodic potentials. Such “lattice solitons” [13] arise in
wide range of systems [14], including molecular chains
[12,15], nonlinear optical waveguide arrays [16—19], and
quantum gases in optical lattices [20-22]. They exist in
both one-dimensional and two-dimensional geometries
[17,23-25] and are predicted to exhibit intricate transport
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properties [20,23,26,27]. However, despite considerable
theoretical interest [20,28-35], the experimental realization
of lattice solitons with attractive matter waves has remained
an open challenge.

Lattice solitons can be classified into single-site (SS) and
multisite (MS) solitons, which extend over different num-
bers of lattice sites, as well as on-site and off-site solitons,
which are centered directly on sites or between them [31].
In this Letter, we provide an experimental demonstration of
both single-site and multisite solitons of attractively inter-
acting matter waves. These solitons form near the center of
the Brillouin zone with energies below the lowest lattice
band [29,36]. This is in contrast to gap solitons with
repulsive interactions [22,37] that appear in the energy gap
near the band edge. We investigate the solitons’ stability
and decay dynamics, and compare our findings with
theoretical predictions. A key element of our experimental
approach is an accordion lattice with variable lattice
spacing d; [38-40], which serves three primary roles:
the preparation of an initial wave packet in a given number
of sites, the study of solitons for varying lattice spacing, and
a magnification scheme for an improved detection of the
soliton’s density distribution.

In addition to studying the soliton’s density profile along
the lattice direction, we found it important to also include
its radial profile and three-body loss in our models.

Published by the American Physical Society
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Although not limiting, three-body loss is non-negligible
due to the increased density arising from lattice confine-
ment and attractive interactions. To capture the soliton’s full
dynamical behavior, we numerically solved the three-
dimensional Gross-Pitaevskii equation (3D GPE) with an
added quintic loss term [41-43]. However, we start by
analyzing the system with a variational approach based on a
Gaussian ansatz [31] to provide initial insight into the
soliton’s stability and the underlying physical mechanisms.

Within this model, the energy of a Gaussian wave packet
with axial length # and radial width ¢ is given by
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Here, 7, o are in units of the radial harmonic oscillator
lengtha, = \/hA/mw |, and E is in units of 7w | , where w |
is the radial trap frequency and m is the atomic mass. The
first term in Eq. (1) provides the kinetic energy of the
soliton, while the second term describes the interaction
energy using the interaction strength ¢ = 2a,N/a | , where
a, is the s-wave scattering length and N the total atom
number. The third term contains the lattice contribution,
with lattice depth V in units of Aw,; and wave number
ky = n/d;. For a simplified illustration [Fig. 1(a)], we
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FIG. 1. Experimental setup and stability diagrams. (a) Energy

E(n) for a Gaussian wave packet with Vy = 1.1E,, a, = —6.2a,
dy, =2 pm. SS and MS solitons are stable at minima Mgg and
M5 with barriers Bgg and Byg. (b) Sketch of the experimental
setup. (c) Stable regions of SS and MS solitons for varying
parameters g and V,, with N = 1800, w, =2z x 30 Hz,
d;, = 3.2 pm. No solitons exist in dark blue regions. (d) Stable
regions for varying d;; same parameters as (c) with constant
Vo =13E, set at di = 3.2 pm.

determined the value o, that minimizes E(1, o) for each
value of n [44,45]. The resulting energy E(n) =
E(1,6min(n7)) shows two minima where stable single-site
and multisite solitons form [Mgg and M5 in Fig. 1(a)].
Collapse toward smaller axial length 7 is prevented by two
barriers Bgg and Byg.

Without a lattice potential, there is only one barrier with
a single critical interaction strength g,. [45], beyond which
the barrier disappears and the wave packet collapses. The
value of g. depends on geometry and confinement, and
various methods have been used for its predictions, e.g.,
numerically solving the full 3D Gross-Pitaevskii equation
[44,46] with a variational approach [44,47], or using the
nonpolynomial Gross-Pitaevskii equation [48]. With a
lattice potential, the barrier heights depend also on lattice
depth and spacing, and g, is replaced by surfaces in the
(g, V. dy)-parameter space that indicate the disappearance
of the barriers.

The patches in Figs. 1(c) and 1(d) represent stable
regions with nonzero energy barriers for parameters
(g9, Vo) and (g, dy ). The critical interaction strength is given
by the boundary that separates parameter regions without
solitons (dark blue patches) and with solitons (“SS” and
“MS”). The interplay between V), d;, and g and the barrier
heights Egg and Eyg is not straightforward. For instance,
decreasing g at a fixed lattice depth [dashed horizontal
arrow in Fig. 1(c)] lowers the barriers due to strong
attractive interactions and leads to the eventual collapse,
first of the single-site soliton followed by the multisite
soliton. Conversely, when the interaction strength is held
constant [dotted vertical arrow in Fig. 1(c)], the multisite
soliton can already exist at shallow lattice depths, whereas a
larger value of V is required to form the energy minimum
M g that supports the single-site soliton. A further increase
of V, eventually eliminates both barriers. Both types of
solitons connect to bright 1D solitons without a lattice,
either in the limit of vanishing lattice depth or in the limit of
large lattice spacing for single-site solitons [49].

In our experiment, we created a magnetically levitated
Bose-Einstein condensate of N ~ 1.3 x 10° cesium atoms
in a crossed-beam dipole trap at a wavelength of 1064 nm
[52,53]. A broad magnetic Feshbach resonance in the F =
3, mp = 3 state with a zero crossing at 17.1 G allowed us to
tune interactions [54,55]. To reduce the atom number, we
lowered the levitation gradient over three seconds
(N =~ 30000 atoms) before transferring the condensate into
our accordion lattice at 780 nm. All but a few central sites
were then selectively cleared using a combination of
microwave transfer and resonant light (N < 3000 atoms)
[Fig. 1(b)] [56]. During the transfer, we set d; = 3.2(2) pm
and V, = 100E, to simplify the spatial site selection in the
levitation gradient. V|, is always given in recoil energy
E, = (hn/dy)?/(2m), where d; is the lattice spacing
specific to each measurement. While we can remove
95% of the atoms per site without affecting neighbors,
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here we increased the removal to close to 100% at the cost
of 5% loss in neighboring sites (for further details, see
Refs. [49,57]).

To prepare the initial density profile of the wave packet
before the interaction quench, we added a dipole trap with
frequency w, [dashed line Fig. 1(b)], adjusted both d; and
V, to their final values, and tuned a, to approximately
+20ay in 400 ms, where a, is Bohr’s radius. An additional
waiting period of 200 ms ensured phase coherence between
the sites, which we verified through free expansion mea-
surements. Finally, we created the solitons by quenching a
to negative values and by removing the longitudinal
trapping potential within 2 ms. After an evolution time
t, we used a magnification scheme to analyze the density
distribution of the wave packet with absorption imaging
[39]. The lattice depth V|, was increased to approximately
100E,, effectively freezing the atom distribution within the
sites, followed by a slow expansion of d_to 20(1) pm over
a period of 400 ms.

In the first measurement, we demonstrated the existence
and properties of single-site solitons. After preparing
approximately 1800 atoms at a single site, we quenched
a, and measured the density profile and the atom number
per lattice site after a hold time of 100 ms. Absorption
images of the density profile show a strong dependence on
a, [Fig. 2(a)]. For a, ~ —8a,, the wave packet remained
localized at the central lattice site, which indicated the
formation of a single-site soliton. Except for some initial
shedding of atoms, we found this soliton to be stable for a
hold time up to 2 s [49]. For stronger attractive interaction,
a, < —10ag, the soliton collapsed, and the remaining
atoms spread along the lattice direction. Weak attractive
and repulsive interactions —5a, < a; < +5a, resulted in
the dispersion of the wave packet, with a minimum at the
central lattice site after the given hold time, while larger
scattering lengths a; > +7a, led again to the localization
of the wave packet. In the two-particle limit, this localized
state corresponds to repulsively bound pairs [58], whereas
in the context of two lattice sites and Josephson oscilla-
tions, it is associated with macroscopic quantum self-
trapping [59,60].

We extended the study to different lattice depths and
determined the relative atom number in the central site
N./N as a measure of the system stability [Fig. 2(b)]. The
data reveal the three regimes: (i) a stable single-site soliton,
(i) a free dispersion of the wave packet close to Oa, and
(iii) the self-trapping for repulsive interaction and sufficient
lattice depth. The regimes can be explained by the height of
the barriers Bgg and Byg. For comparison, Fig. 2(c) shows
the energy Egg, which is the height of barrier Bgg [see
Fig. 1(a) and [49] ]. Large values of Egg align well with the
experimental data in Fig. 2(c), accurately predicting the
stable regions (i) and (iii). However, Egg does not capture
the evolution of the wave packet close to zero scattering
length in region (ii), where the wave packet spreads. While
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FIG. 2. Stability of single-site solitons. (a) Measured den-
sity distribution after a quench of a,; and = 100 ms hold time
with dy =3.2(2) pm, V,=13(1)E,, w, =2z x40(1) Hz,
N =~ 1800. White lines mark atoms in the central site. (b) Mea-
sured relative central-site atom number N./N vs a, and V, with
the same parameters as (a). (c) Energy Egg of the barrier Bgg;
(i)—(iii) indicate regions of varying stability in (b),(c). See
Ref. [49] for the definition of Egg for a, > Oa,. (d) Density
distribution for varying d; after 100 ms with a = —6.4qa,
N ~ 1800, constant V= 1.3(1)E, set at dp =3.2(2) pm.
(e) Calculated E(z) for (d) with d;, = 3.5 pm (dotted line) and
dy, = 2.0 pm (solid line). Measured data are averaged over
typically seven repetitions.

collapse is prevented by barrier Bgg, spreading is inhibited
by the barriers at larger values of » [Fig. 1(a)].

To investigate the effect of the lattice spacing on the
stability of the solitons, we varied d; while keeping V, and
a, constant [Fig. 2(d)]. Absorption images taken after a
hold time of 100 ms show a spreading of the wave packet
for di <2.5 pm [Fig. 2(d)]. Our calculations of E(n)
indicate that as d; decreases, the minimum M gg disappears,
while the barrier Bgg persists [Fig. 2(e)]. Consequently, the
observed spreading after the interaction quench is not due
to a collapse, as observed in Fig. 2(a), but rather due to the
absence of an energy minimum. The calculated minimum
Mgg vanishes for di = 2.2 pm, which agrees with our
experimental data (dy ~2.5 pm). This measurement
also aligns well with the stability diagram in Fig. 1(d)
(dotted arrow).

In the second measurement, we investigated the stability
of multisite wave packets. To prepare the initial state, we
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FIG. 3. Stability of a multisite wave packet. (a),(b) Time evo-

lution of a wave packet after a quench of a, averaged over ten
repetitions with V= 1.3E,, di =2.6 pm, o, = 27 x 25 Hz,
w, = 2 x 25 Hz, N = 2900. (a) The wave packet disperses for a
quench to a; = 4+2.0a, and (b) mostly retains its overall shape
for —5.7a,. Site occupation numbers for both datasets are
provided in Ref. [49]. (c) Density profiles of the wave packet
immediately after the quench (gray), and after 250 ms for 4-2.0q,
(red) and —5.7a; (blue). (d) Atom number for data in (b); error
bars denote the standard deviation. A comparison of the data in
(c),(d) with a 3D-GPE simulation is provided in Ref. [49].

adjusted the microwave transfer to remove all but the atoms
in three adjacent lattice sites. During the subsequent wait-
ing period, this density profile evolved toward a Gaussian
envelope spanning three to five lattice sites determined by
the trapping frequency w,. After the quench, we observed
stronger density fluctuations compared to single-site sol-
itons, showing in some cases a splitting of the soliton with
moving fractions. Quantum fluctuations have been sug-
gested as a possible cause of this fragmentation [61-63].
However, here, we attributed it to technical noise and the
low binding energy of multisite solitons E [Fig. 1(a)].
We studied the time evolution of the wave packet over
250 ms following the quench. For scattering lengths near
zero [Fig. 3(a)], the wave packet shows dispersion, whereas
for a;, = —5.7a, [Fig. 3(b)], it remains mostly localized.
We attribute this localization to the formation of a multisite
solitonlike state. The density profiles show little change in
site occupations between ¢ = 100 and 250 ms, indicating a
stable configuration. However, during the initial tens of
milliseconds, we observe a loss of atoms in the three central
sites. We attribute this initial depletion to three-body loss,
which predominantly occurs in high-density regions where
attractive interactions enhance the local density [64]. The
subsequent atom loss is strongly reduced, and we speculate
that the wave packet gradually adjusts its radial and axial
sizes in response to the slowly decreasing atom number.
The 1D density profiles [Fig. 3(c)] and the measured
total atom number [Fig. 3(d)] support this interpretation.
Comparing the initial 1D density profile [gray line in
Fig. 3(c)] with the profile after 250 ms reveals a reduction
in atom number at the three central sites for the solitonlike
wave packet (blue line), while the overall profile remains
localized. In contrast, for near-zero interactions (red line),
the wave packet undergoes significant spreading, with
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FIG. 4. Collapse of a multisite wave packet. (a) Width w,, of the
wave packet at + = 150 ms after quenching to different values
of a,, with Vy=14E,, d =2.6 um, o, =2z x 30 Hz,
N =~ 1700. The gray patch shows the variation in w,, calculated
using the 3D GPE, resulting from uncertainties in the three-body
loss coefficient Ly and N. The line is an average of the
calculations [49]. Inset, left to right: typical images of the density
profiles after collapse (a, = —17a,) shrinking toward the central
site (a;, = —10a,) and expanding wave packet (a, = Oay).
(b) Stability regions calculated using Eq. (1) with an existing
minimum My (brown) and without (blue), with breathing
oscillations for E(7) < E, and Eyg (yellow), and with stable
multisite solitons for E(ng) = Eys (black). (c),(d) The calcu-
lated time evolution of the density distribution and relative atom
number show collapse followed by expansion for a;, = —9.5ay,
and (e),(f) dispersion for a; = —1.7a,. Calculations use L3 =
5x 1073 mbs~! and other parameters as in (a).

increased occupation of the outermost sites. To quantify
the spreading, we calculated the relative site occupations
N;/N and extracted the wave packet width [49]. The
noninteracting and solitonlike wave packets exhibit linear
dispersion velocities of 12 and 7 sites/s, respectively. For
the solitonlike wave packet, this apparent spreading mainly
reflects the flattening of the density profile rather than
significant mass transport. We also found good agree-
ment of the density profiles and atom numbers in Figs. 3(c)
and 3(d) with simulations of the 3D GPE [49].

Finally, we quantitatively analyzed the collapse by mea-
suring the wave packets’ density profiles at + = 150 ms
over a broad range of scattering lengths [Fig. 4(a)]. To
account for varying density distributions, we calculated the
second-moment width w,, of the site occupations defined as

1 _ L
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Here, z; is the position of the jth lattice site, and Z is the
center-of-mass position. The value of w,, indicates the
varying stability of the wave packet depending on aj. It
spreads for a,; =~ Oag, shrinks toward the central site for
a, =~ —10ag, and spreads after collapse for strong attractive
interactions a,; < —13a,. Single absorption images illus-
trate the spreading and shrinking of the wave packet in the
different regions [inset in Fig. 4(a)].

The variational approach used in Eq. (1) provides a
simple model for predicting the evolution of the wave
packet after quenching to scattering length a,. Within the
model, stability is achieved when the initial parameters of
the wave packet N(0) and 7, closely match those of a
multisite soliton with length #yg. In our experimental
protocol, N(0) and 5, are set during preparation, while
only a, can be varied. A soliton is created by quenching the
scattering length to ai with 1y = s (N(0), a}). For other
quench values close to a}, the wave packet is expected to
exhibit small breathing oscillations [31], unless its initial
energy E(1,) exceeds one of the barrier energies E,, or
Eys, leading to dispersion or collapse. Calculating the
barrier energy barriers E., and Eyg using Eq. (1) allows us
to predict the stability regions. The brown patch in Fig. 4(b)
marks where a minimum Mg exists. Stable solitons form
only along the black line, while breathing oscillations occur
within the yellow regions. Assuming a fixed atom number
further constrains the choice of a; to lie on the dashed line,
though in practice N decreases due to three-body loss.

To capture the full evolution of the wave packet beyond
this simple model, we numerically simulated the dynamics
of the multisite soliton using a modified GPE with a quintic
term that accounts for three-body loss [41,42,49]. The
simulations show two distinct dynamical regimes. In the
first regime, corresponding to large negative values of ay,
the wave packet begins to collapse, leading to an increase in
local density at the central site [Fig. 4(c)]. However, a
further shrinking of the wave packet is suppressed by the
enhanced loss and a rapid shedding of atoms [Fig. 4(d)].
The second regime, which occurs for less negative values of
a,, is marked by a slow dispersion of the matter wave, and
has lower and more gradual atom loss [Figs. 4(e) and 4(f)].

The simulation agrees well with the observed shrinking
in w,,, during the collapse process. However, it is sensitive
to the precise values of atom number and the three-body
loss coefficient [64,65], resulting in an uncertainty of the
predicted dynamics [gray patch in Fig. 4(a)] [49]. In
addition, imaging noise in the experimental data increases
w,,, leading to an offset and reduced contrast compared to
the simulation. While the observed atom loss was suffi-
ciently low to permit the formation and investigation of
lattice solitons, its inclusion in our simulation was still
essential to reproduce our observations. Interestingly, at
strong attractive interactions, the loss helped to suppress
collapse and enhanced the stability of the system.

In conclusion, we have demonstrated the existence and
stability of both single-site and multisite solitons that

extend over varying numbers of lattice sites. Using an
accordion lattice with adjustable lattice spacing, we examined
their properties across various lattice depths and spacings, and
compared our findings with theoretical predictions. A varia-
tional model based on a Gaussian approximation for the
solitons was used to identify stable parameter regions, while
numerical simulations of the 3D GPE with a three-body loss
term captured the solitons’ time evolution. We found both
types of solitons to be stable for hundreds of milliseconds,
allowing ample time for further studies.

Our results pave the way for exploring a multitude of
nonlinear matter-wave excitations in optical lattices, such
as lattice breathers [66] and discrete solitons in deep lattice
potentials, described by the discrete nonlinear Schrédinger
equation [32,67]. For example, our approach allows us to
investigate the Peierls-Nabarro barrier [23], probe 2D
solitons [24], and experimentally access the dynamical
phase diagram [20,27], which predicts the emergence of
breathers and solitons as a function of the quasimomentum.
Our results advance the understanding of nonlinear wave
dynamics in structured media and open new avenues for
technological applications, e.g., in matter-wave interfer-
ometry [68—70], precision sensing [71], and the controlled
transport of atomic wave packets for quantum information
processing [72,73].
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